
The make4ht build system
Michal Hoftich∗

Version v0.3m
2023-02-24

Contents
1 Introduction 2

2 Usage 3
2.1 Command line options . 3
2.2 Option handling . 3
2.3 Input from the standard input . 4
2.4 Change amount of information printed on the command line . . 4

3 Difference of make4ht from htlatex 4
3.1 Passing of command line arguments to low-level commands used

in the conversion . 4
3.2 Compilation sequence . 5
3.3 Handling of the generated files 6
3.4 Image conversion and postprocessing of the generated files . . . 6

4 Output file formats and extensions 6
4.1 Extensions . 7

5 Build files 8
5.1 User commands . 8

5.1.1 The command function . 8
5.1.2 The settings table table 9
5.1.3 Repetition . 9
5.1.4 Expected exit code . 9

5.2 Provided commands . 9
5.3 File matches . 10

5.3.1 Filters . 11
5.3.2 DOM filters . 12

5.4 Image conversion . 13
5.5 The mode variable . 13
5.6 The settings table . 14

5.6.1 Default settings . 15
∗<michal.h21@gmail.com>

1

michal.h21@gmail.com

6 make4ht configuration file 15
6.1 Location . 15
6.2 Additional commands . 15
6.3 Example . 16

7 List of available settings for filters and extensions. 16
7.1 Indexing commands . 16

7.1.1 The xindy command . 16
7.1.2 The makeindex command 16
7.1.3 The xindex command . 16

7.2 The tidy extension . 16
7.3 The collapsetoc dom filter . 17
7.4 The fixinlines dom filter . 17
7.5 The joincharacters dom filter 17
7.6 The mjcli filter and extension . 18

7.6.1 Available settings . 18
7.7 The staticsite filter and extension 18
7.8 The dvisvgm_hashes extension . 19
7.9 The odttemplate filter and extension 19
7.10 The aeneas filter . 19
7.11 The make4ht-aeneas-config package 20

7.11.1 Available parameters . 20
7.11.2 Additional parameters for the job configuration file . . . 20
7.11.3 Available map options . 21
7.11.4 Full example . 21

8 Troubleshooting 22
8.1 Incorrect handling of command line arguments for tex4ht, t4ht

or latex . 22
8.2 Table of Contents points to a wrong destination 22
8.3 Filenames containing spaces . 22
8.4 Filenames containing non-ASCII characters 22

9 License 23

10 Changelog 23

1 Introduction
make4ht is a build system for TEX4ht, TEX to XML converter. It provides a
command line tool that drives the conversion process. It also provides a library
that can be used to create customized conversion tools. An example of such
a tool is tex4ebook, a tool for conversion from TEX to ePub and other e-book
formats.

See section 3 for some reasons why you should consider to use make4ht

instead of htlatex,
section 4 talks about supported output formats and extensions and section
5 describes build files, which can be used to execute additional commands or
post-process the generated files.

2

https://tug.org/tex4ht/
https://github.com/michal-h21/tex4ebook

2 Usage
The basic conversion from LATEX to HTML using make4ht can be executed using
the following command:

$ make4ht filename.tex

It will produce a file named filename.html if the compilation goes without
fatal errors.

2.1 Command line options
make4ht - build system for TeX4ht

Usage:

make4ht [options] filename ["tex4ht.sty op." "tex4ht op."

"t4ht op" "latex op"]

-a,--loglevel (default status) Set log level.

possible values: debug, info, status, warning, error, fatal

-b,--backend (default tex4ht) Backend used for xml generation.

possible values: tex4ht or lua4ht

-c,--config (default xhtml) Custom config file

-d,--output-dir (default "") Output directory

-e,--build-file (default nil) If the build filename is different

than `filename`.mk4

-f,--format (default nil) Output file format

-j,--jobname (default nil) Set the jobname

-l,--lua Use lualatex for document compilation

-m,--mode (default default) Switch which can be used in the makefile

-n,--no-tex4ht Disable DVI file processing with tex4ht command

-s,--shell-escape Enables running external programs from LaTeX

-u,--utf8 For output documents in utf8 encoding

-x,--xetex Use xelatex for document compilation

-v,--version Print version number

<filename> (string) Input filename

2.2 Option handling
It is possible to invoke make4ht in the same way as htlatex:

$ make4ht filename "customcfg, charset=utf-8" "-cunihtf -utf8" "-dfoo"

Note that this will not use make4ht routines for the output directory handling.
See section 3.3 for more information about this issue. To use these routines,
change the previous listing to:

$ make4ht -d foo filename "customcfg, charset=utf-8" "-cunihtf -utf8"

This call has the same effect as the following:

$ make4ht -u -c customcfg -d foo filename

Output directory does not have to exist, it make4ht creates it automatically.
Specified path can be relative to the current directory, or absolute:

3

$ make4ht -d use/current/dir/ filename

$ make4ht -d ../gotoparrentdir filename

$ make4ht -d ~/gotohomedir filename

$ make4ht -d c:\documents\windowspathsareworkingtoo filename

The short options that do not take parameters can be collapsed:

$ make4ht -ulc customcfg -d foo filename

2.3 Input from the standard input
To pass the output from other commands to make4ht, use the - character as a
filename. It is best to use this feature together with the --jobname or -j option.

$ cat hello.tex | make4ht -j world -

2.4 Change amount of information printed on the com-
mand line

By default, make4ht tries to be quiet, so it hides most of the command line
messages and output from the executed commands. It displays status messages,
warnings, and errors. The logging level can be selected using the --loglevel or
-a options. If the compilation fails, it may be useful to display more information
using the info or debug levels.

$ make4ht -a debug faulty.tex

3 Difference of make4ht from htlatex

TEX4ht system supports several output formats, most notably XHTML, HTML 5

and ODT, but it also supports TEI or Docbook.
The conversion can be invoked using several scripts, which are distributed

with TEX4ht. They differ in parameters passed to the underlying commands.
These scripts invoke LATEX or Plain TEX with special instructions to load

the tex4ht.sty package. The TEX run produces a special DVI file that contains
the code for the desired output format. The produced DVI file is then processed
using the tex4ht command, which in conjunction with the t4ht command
produces the desired output files.

3.1 Passing of command line arguments to low-level com-
mands used in the conversion

The basic conversion script provided by TEX4ht system is named htlatex. It
compiles LATEX files to HTML with this command sequence:

$ latex $latex_options 'code for loading tex4ht.sty \input{filename}'

$ latex $latex_options 'code for loading tex4ht.sty \input{filename}'

$ latex $latex_options 'code for loading tex4ht.sty \input{filename}'

$ tex4ht $tex4ht_options filename

$ t4ht $t4ht_options filename

4

The options for various parts of the system can be passed on the command
line:
$ htlatex filename "tex4ht.sty options" "tex4ht_options" "t4ht_options" "latex_options"

For basic HTML conversion it is possible to use the most basic invocation:
$ htlatex filename.tex

It can be much more involved for the HTML 5 output in UTF-8 encoding:
$ htlatex filename.tex "xhtml,html5,charset=utf-8" " -cmozhtf -utf8"

make4ht can simplify it:
$ make4ht -u filename.tex

The -u option requires the UTF-8 encoding. HTML 5 is used as the default
output format by make4ht.

More information about the command line arguments can be found in
section 2.1.

3.2 Compilation sequence
htlatex has a fixed compilation order and a hard-coded number of LATEX invo-
cations.

It is not possible to execute additional commands during the compilation.
When we want to run a program that interacts with LATEX, such as Makeindex

or Bibtex, we have two options. The first option is to create a new script based
on htlatex and add the wanted commands to the modified script. The second
option is to execute htlatex, then the additional and then htlatex again. The
second option means that LATEX will be invoked six times, as each call to htlatex
executes three calls to LATEX. This can lead to significantly long compilation
times.

make4ht provides a solution for this issue using a build file, or extensions.
These can be used for interaction with external tools.

make4ht also provides compilation modes, which enables to select commands
that should be executed using a command line option.

There is a built-in draft mode, which invokes LATEX only once, instead of
the default three invocations. It is useful for the compilations of the document
before its final stage, when it is not important that all cross-references work.
It can save quite a lot of the compilation time:
$ make4ht -um draft filename.tex

Another buil-in mode is clean. It executes the Make:clean() command
to remove all generated and temporary files from the current directory. No
LATEX compilation happens in this mode.

It should be used in this way:
copy generated files to a direcory

$ make4ht -d outdir filename.tex

remove all generated files in the current dir

the -a info option will print files that are removed

$ make4ht -m clean -a info filename.tex

More information about the build files can be found in section 5.

5

3.3 Handling of the generated files
There are also issues with the behavior of the t4ht application. It reads the .lg

file generated by the tex4ht command. This file contains information about the
generated files, CSS instructions, calls to the external applications, instructions
for image conversions, etc.

t4ht can be instructed to copy the generated files to an output directory,
but it doesn’t preserve the directory structure. When the images are placed in
a
subdirectory, they will be copied to the output directory, losing the directory
structure. Links will be pointing to a non-existing subdirectory. The following
command should copy all output files to the correct destinations.

$ make4ht -d outputdir filename.tex

3.4 Image conversion and postprocessing of the generated
files

TEX4ht can convert parts of the document to images. This is useful for diagrams
or complicated math, for example.

By default, the image conversion is configured in a .env file. It has a bit
of strange syntax, with operating system dependent rules. make4ht provides
simpler means for the image conversion in the build files. It is possible to
change the image conversion parameters without a need to modify the .env

file. The process is described in section 5.4.
It is also possible to post-process the generated output files. The post-

processing can be done either using external programs such as XSLT processors
and HTML Tidy or using Lua functions. More information can be found in section
5.3.

4 Output file formats and extensions
The default output format used by make4ht is html5. A different format can be
requested using the --format option. Supported formats are:

• xhtml

• html5

• odt

• tei

• docbook

The --format option can be also used for extension loading.

6

https://www.tug.org/applications/tex4ht/mn34.html#mn35.html

4.1 Extensions
Extensions can be used to modify the build process without the need to use
a build file. They may post-process the output files or request additional
commands for the compilation.

The extensions can be enabled or disabled by appending +EXTENSION or
-EXTENSION after the output format name:

$ make4ht -uf html5+tidy filename.tex

Available extensions:

common_filters clean the output HTML files using filters.

common_domfilters clean the HTML file using DOM filters. It is more pow-
erful than common_filters. Used DOM filters are fixinlines, idcolons,
joincharacters, sectionid and tablerows.

detect_engine detect engine and format necessary for the document com-
pilation from the magic comments supported by LATEX editors such as
TeXShop or TeXWorks. Add something like the following line at the
beginning of the main TEX file:
%!TEX TS-program = xelatex

It supports also Plain TEX, use for example tex or luatex as the program
name.

dvisvgm_hashes efficient generation of SVG pictures using Dvisvgm. It can
utilize multiple processor cores and generates only changed images.

inlinecss load the inlinecss DOM filter.

join_colors load the joincolors DOM filter for all HTML files.

latexmk_build use Latexmk for the LATEX compilation.

mathjaxnode (deprecated, use mjcli extension instead) Old information:
use mathjax-node-page to convert from MathML code to HTML + CSS or
SVG. See the available settings.

mjcli use mjcli to convert math in MathML or LATEX format to plain HTML
+ CSS. MathML is used by default. If you want to use LATEX math, add
“mathjax” option on the command line (like make4ht -f html5+mjcli

filename.tex "mathjax"). See the available settings.

odttemplate it automatically loads the odttemplate filter (page 11).

preprocess_input compilation of the formats supported by Knitr (.Rnw,
.Rtex, .Rmd, .Rrst) and also Markdown and reStructuredText formats. It
requires R + Knitr installation, it requires also Pandoc for formats based
on Markdown or reStructuredText.

staticsite build the document in a form suitable for static site generators like
Jekyll.

tidy clean the HTML files using the tidy command.

7

https://ctan.org/pkg/latexmk?lang=en
https://github.com/pkra/mathjax-node-page/
https://github.com/michal-h21/mjcli
https://yihui.name/knitr/
https://www.r-project.org/
https://yihui.name/knitr/
https://pandoc.org/
https://jekyllrb.com/

5 Build files
make4ht supports build files. These are Lua scripts that can adjust the build
process. They can request external applications like BibTeX or Makeindex, pass
options to the commands, modify the image conversion process, or post-process
the generated files.

make4ht tries to load default build file named as filename + .mk4 extension.
It is possible to select a different build file with -e or --build-file command
line option.

Sample build file:

Make:htlatex()

Make:match("html$", "tidy -m -xml -utf8 -q -i ${filename}")

Make:htlatex() is preconfigured command for calling LATEX with the
tex4ht.sty package loaded. In this example, it will be executed only once.
After the compilation, the tidy command is executed on the output HTML files.

Note that it is not necessary to call tex4ht and t4ht commands explicitly
in the build file, they are called automatically.

5.1 User commands
It is possible to add more commands like Make:htlatex using the Make:add

command:

Make:add("name", "command", {settings table}, repetition)

This defines the name command, which can be then executed using
Make:name() command in the build file.

The name and command parameters are required, the rest of the parameters
are optional.

The defined command receives a table with settings as a parameter at the
call time. The default settings are provided by make4ht. Additional settings
can be declared in the Make:add commands, user can also override the default
settings when the command is executed in the build file:

Make:name({hello="world"})

More information about settings, including the default settings provided by
make4ht, can be found in section 5.6 on page 14.

5.1.1 The command function

The command parameter can be either a string template or function:

Make:add("text", "echo hello, input file: ${input}")

The template can get a variable value from the parameters table using a
${var_name} placeholder. Templates are executed using the operating system,
so they should invoke existing OS commands.

8

5.1.2 The settings table table

The settings table parameter is optional. If it is present, it should be a table
with new settings available in the command. It can also override the default
make4ht settings for the defined command.

Make:add("sample_function", function(params)

for k, v in pairs(params) do

print(k..": "..v)

end, {custom="Hello world"}

)

5.1.3 Repetition

The repetition parameter specifies the maximum number of executions of the
particular command. This is used for instance for tex4ht and t4ht commands,
as they should be executed only once in the compilation. They would be executed
multiple times when they are included in the build file, as they are called by
make4ht by default. Because these commands allow only one repetition, the
second execution is blocked.

5.1.4 Expected exit code

You can set the expected exit code from a command with a correct_exit key
in the settings table. The compilation will be terminated when the command
returns a different exit code.

Make:add("biber", "biber ${input}", {correct_exit=0})

Commands that execute lua functions can return the numerical values
using the return statement.

This mechanism isn’t used for TEX, because it doesn’t differentiate between
fatal and non-fatal errors. It returns the same exit code in all cases. Because of
this, log parsing is used for a fatal error detection instead. Error code value 1 is
returned in the case of a fatal error, 0 is used otherwise. The Make.testlogfile
function can be used in the build file to detect compilation errors in the TeX
log file.

5.2 Provided commands
Make:htlatex One call to the TeX engine with special configuration for loading

of the tex4ht.sty package.

Make:clean This command removes all generated files, including images,
HTML files and various auxilary files, from the current directory. It
keeps files whose file names don’t match the input file name. It is prefer-
able to use make4ht -m clean filename.tex to clean output files.

Make:httex Variant of Make:htlatex suitable for Plain TEX.

Make:latexmk Use Latexmk for the document compilation. tex4ht.sty will be
loaded automatically.

9

Make:tex4ht Process the DVI file and create output files.

Make:t4ht Create the CSS file and generate images.

Make:biber Process bibliography using the biber command.

Make:pythontex Process the input file using pythontex.

Make:bibtex Process bibliography using the bibtex command.

Make:xindy Generate index using Xindy index processor.

Make:makeindex Generate index using the Makeindex command.

Make:xindex Generate index using the Xindex command.

5.3 File matches
Another type of action that can be specified in the build file is Make:match. It
can be used to post-process the generated files:

Make:match("html$", "tidy -m -xml -utf8 -q -i ${filename}")

The above example will clean all output HTML files using the tidy command.
The Make:match action tests output filenames using a Lua pattern matching

function.
It executes a command or a function, specified in the second argument, on files
whose filenames match the pattern.

The commands to be executed can be specified as strings. They can contain
${var_name} placeholders, which are replaced with corresponding variables
from the settings table. The templating system was described in subsection
5.1.1. There is an additional variable available in this table, called filename.
It contains the name of the current output file.

If a function is used instead, it will get two parameters. The first one is the
current filename, the second one is the settings table.

Make:match("html$", function(filename, settings)

print("Post-processing file: ".. filename)

print("Available settings")

for k,v in pairs(settings)

print(k,v)

end

return true

end)
Multiple post-processing actions can be executed on each filename. The Lua

action functions can return an exit code. If the exit code is false, the execution
of the post-processing chain for the current file will be terminated.

10

5.3.1 Filters

To make it easier to post-process the generated files using the match actions,
make4ht provides a filtering mechanism thanks to the make4ht-filter module.

The make4ht-filter module returns a function that can be used for the
filter chain building. Multiple filters can be chained into a pipeline. Each filter
can modify the string that is passed to it from the previous filters. The changes
are then saved to the processed file.

Several built-in filters are available, it is also possible to create new ones.
Example that use only the built-in filters:

local filter = require "make4ht-filter"

local process = filter{"cleanspan", "fixligatures", "hruletohr"}

Make:htlatex()

Make:match("html$",process)

Function filter accepts also function arguments, in this case this function
takes file contents as a parameter and modified contents are returned.

Example with custom filter:

local filter = require "make4ht-filter"

local changea = function(s) return s:gsub("a","z") end

local process = filter{"cleanspan", "fixligatures", changea}

Make:htlatex()

Make:match("html$",process)

In this example, spurious span elements are joined, ligatures are decom-
posed, and then all letters “a” are replaced with “z” letters.

Built-in filters are the following:

cleanspan clean spurious span elements when accented characters are used

cleanspan-nat alternative clean span filter, provided by Nat Kuhn

fixligatures decompose ligatures to base characters

hruletohr \hrule commands are translated to series of underscore characters
by TEX4ht, this filter translates these underscores to <hr> elements

entites convert prohibited named entities to numeric entities (only

currently).

fix-links replace colons in local links and id attributes with underscores.
Some cross-reference commands may produce colons in internal links,
which results in a validation error.

mathjaxnode (deprecated, use mjcli extension instead) Old information:
use mathjax-node-page to convert from MathML code to HTML + CSS or
SVG. See the available settings.

mjcli use mjcli to convert math in MathML or LATEX format to plain HTML +
CSS. See the available settings.

odttemplate use styles from another ODT file serving as a template in the
current document. It works for the styles.xml file in the ODT file. During
the compilation, this file is named as \jobname.4oy.

11

https://github.com/pkra/mathjax-node-page/
https://github.com/michal-h21/mjcli

staticsite create HTML files in a format suitable for static site generators
such as Jekyll

svg-height some SVG images produced by dvisvgm seem to have wrong di-
mensions. This filter tries to set the correct image size.

5.3.2 DOM filters

DOM filters are variants of filters that use the LuaXML library to modify directly
the XML object. This enables more powerful operations than the regex-based
filters from the previous section.

Example:

local domfilter = require "make4ht-domfilter"

local process = domfilter {"joincharacters"}

Make:match("html$", process)

Available DOM filters:

aeneas Aeneas is a tool for automagical synchronization of text and audio.
This filter modifies the HTML code to support synchronization.

booktabs fix lines produced by the \cmidrule command provided by the Book-
tabs package.

collapsetoc collapse table of contents to contain only top-level sectioning level
and sections on the current page.

fixinlines put all inline elements which are direct children of the <body>

elements to a paragraph.

idcolons replace the colon (:) character in internal links and id attributes.
They cause validation issues.

inlinecss remove CSS rules that target elements with unique attributes,
such as color boxes, table rules, or inline math pictures, and insert their
properties as a inline style attribute in the HTML document.

joincharacters join consecutive or <mn> elements. This DOM filter
supersedes the cleanspan filter.

joincolors many elements with unique id attributes are created when
LATEX colors are being used in the document. A CSS rule is added for each
of these elements, which may result in substantial growth of the CSS
file. This filter replaces these rules with a common one for elements with
the same color value. See also the inlinecss DOM filter and extension,
which provides an alternative using inline styles.

odtfonts fix styles for fonts that were wrongly converted by Xtpipes in the
ODT format.

odtimagesize set correct dimensions for images in the ODT format. It is no
longer used, as the dimensions are set by TeX4ht itself.

12

https://jekyllrb.com/
https://ctan.org/pkg/luaxml
https://www.readbeyond.it/aeneas/

odtpartable resolve tables nested inside paragraphs, which is invalid in the
ODT format.

tablerows remove spurious rows from HTML tables.

mathmlfixes fix common issues for MathML.

sectionid create id attribute for HTML sectioning elements derived from
the section title. It also updates links to these sections. Use the notoc

command line option to prevent that.

t4htlinks fix hyperlinks in the ODT format.

5.4 Image conversion
It is possible to convert parts of the LATEX input as pictures. It can be used for
preserving the appearance of math or diagrams, for example.

These pictures are stored in a special DVI file, which can be processed by a
DVI to image commands, such as dvipng or dvisvgm.

This conversion is normally configured in the tex4ht.env file. This file is
system dependent and it has quite an unintuitive syntax. The configuration is
processed by the t4ht application and the conversion command is called for all
pictures.

It is possible to disable t4ht image processing and configure image conver-
sion in the build file using the image action:

Make:image("png$",

"dvipng -bg Transparent -T tight -o ${output} -pp ${page} ${source}")

Make:image takes two parameters, a Lua pattern to match the image name,
and the action.

Action can be either a string template with the conversion command or a
function that takes a table with parameters as an argument.

There are three parameters:

• output - output image filename

• source - DVI file with the pictures

• page - page number of the converted image

5.5 The mode variable
The mode variable available in the build process contains contents of the --mode

command line option. It can be used to run some commands conditionally. For
example:

if mode == "draft" then

Make:htlatex{}

else

Make:htlatex{}

Make:htlatex{}

Make:htlatex{}

end

13

In this example (which is the default configuration used by make4ht), LATEX is
called only once when make4ht is called with the draft mode:

make4ht -m draft filename

5.6 The settings table
It is possible to access the parameters outside commands, file matches and
image conversion functions. For example, to convert the document to the
OpenDocument Format (ODT), the following settings can be used. They are
based on the oolatex command:

settings.tex4ht_sty_par = settings.tex4ht_sty_par ..",ooffice"

settings.tex4ht_par = settings.tex4ht_par .. " ooffice/! -cmozhtf"

settings.t4ht_par = settings.t4ht_par .. " -cooxtpipes -coo "

(Note that it is possible to use the --format odt option which is superior to
the previous code. This example is intended just as an illustration)

There are some functions to simplify access to the settings:

set_settings{parameters} overwrite settings with values from a passed table

settings_add{parameters} add values to the current settings

filter_settings "filter name" {parameters} set settings for a filter

get_filter_settings(name) get settings for a filter

For example, it is possible to simplify the sample from the previous code
listings:

settings_add {

tex4ht_sty_par =",ooffice",

tex4ht_par = " ooffice/! -cmozhtf",

t4ht_par = " -cooxtpipes -coo "

}

Settings for filters and extensions can be set using filter_settings:

filter_settings "test" {

hello = "world"

}

These settings can be retrieved in the extensions and filters using the
get_filter_settings function:

function test(input)

local options = get_filter_settings("test")

print(options.hello)

return input

end

14

5.6.1 Default settings

The default parameters are the following:
htlatex used TEX engine

input content of \jobname, see also the tex_file parameter.

interaction interaction mode for the TEX engine. The default value is
batchmode to suppress user input on compilation errors. It also sup-
presses most of the TEX compilation log output. Use the errorstopmode

for the default behavior.

tex_file input TEX filename

latex_par command line parameters to the TEX engine

packages additional LATEX code inserted before \documentclass. Useful for
passing options to packages used in the document or to load additional
packages.

tex4ht_sty_par options for tex4ht.sty

tex4ht_par command line options for the tex4ht command

t4ht_par command line options for the t4ht command

outdir the output directory

correct_exit expected exit code from the command. The compilation will
be terminated if the exit code of the executed command has a different
value.

6 make4ht configuration file
It is possible to globally modify the build settings using the configuration file.
It is a special version of a build file where the global settings can be set.

Common tasks for the configuration file can be a declaration of the new
commands, loading of the default filters or specification of a default build
sequence.

One additional functionality not available in the build files are commands
for enabling and disabling of extensions.

6.1 Location
The configuration file can be saved either in the $HOME/.config/make4ht/config.lua
file, or in the .make4ht file placed in the current directory or it’s parent direc-
tories (up to the $HOME directory).

6.2 Additional commands
There are two additional commands:
Make:enable_extension(name) require extension

Make:disable_extension(name) disable extension

15

6.3 Example
The following example of the configuration file adds support for the biber

command, requires common_domfilters extension and requires MathML output
for math.

Make:add("biber", "biber ${input}")

Make:enable_extension "common_domfilters"

settings_add {

tex4ht_sty_par =",mathml"

}

7 List of available settings for filters and exten-
sions.

These settings may be set using filter_settings function in a build file or in
the make4ht configuration file.

7.1 Indexing commands
The indexing commands (like xindy or makeindex) use some common settings.

idxfile name of the .idx file. Default value is \jobname.idx.

indfile name of the .ind file. Default value is the same as idxfile with the
file extension changed to .ind.

Each indexing command can have some additional settings.

7.1.1 The xindy command

encoding text encoding of the .idx file. Default value is utf8.

language index language. Default language is English.

modules table with names of additional Xindy modules to be used.

7.1.2 The makeindex command

options additional command line options for the Makeindex command.

7.1.3 The xindex command

options additional command line options for the Xindex command.

language document language

7.2 The tidy extension
options command line options for the tidy command. Default value is -m

-utf8 -w 512 -q.

16

7.3 The collapsetoc dom filter
toc_query CSS selector for selection of element that contains the table of

contents.

title_query CSS selector for selecting all elements that contain the section
ID attribute.

toc_levels table containing a hierarchy of classes used in TOC

max_depth set detph of displayed children TOC levels

Default values:

filter_settings "collapsetoc" {

toc_query = ".tableofcontents",

title_query = "h1 a, h2 a, h3 a, h4 a, h5 a, h6 a",

max_depth = 1,

toc_levels = {

tocpart = 1,

toclikepart = 1,

tocappendix = 1,

toclikechapter = 2,

tocchapter = 2,

tocsection = 3,

toclikesection = 3,

tocsubsection = 4,

toclikesubsection = 4,

tocsubsubsection = 5,

toclikesubsubsection = 5,

tocparagraph = 6,

toclikeparagraph = 6,

tocsubparagraph = 7,

toclikesubparagraph = 7,

}

}

7.4 The fixinlines dom filter
inline_elements table of inline elements that shouldn’t be direct descendants

of the body element. The element names should be table keys, the values
should be true.

Example

filter_settings "fixinlines" {inline_elements = {a = true, b = true}}

7.5 The joincharacters dom filter
charclasses table of elements that should be concatenated when two or more

of such elements with the same value of the class attribute are placed
one after another.

Example

filter_settings "joincharacters" { charclasses = { span=true, mn = true}}

17

7.6 The mjcli filter and extension
mjcli detects whether to use MathML or LATEX input by use of the mathjax

option for make4ht. By default, it uses MathML. LATEX input can be required
using:

make4ht -f html5+mjcli filename.tex "mathjax"

7.6.1 Available settings

options command line options for the mjcli command.

Example

filter_settings "mjcli" {

options="--svg"

}

cssfilename the mjcli command puts some CSS code into the HTML pages.
The mjcli filter extracts this information and saves it to a standalone
CSS file. Default name of this CSS file is ${input}-mathjax.css

fontdir directory with MathJax font files. This option enables the use of local
fonts, which is useful in the conversion to ePub, for example. The font
directory should be sub-directory of the current directory. Only TEX font
is supported at the moment.

Example

filter_settings "mjcli" {

fontdir="fonts/TeX/woff/"

}

7.7 The staticsite filter and extension
site_root directory where generated files should be copied.

map a hash table where keys contain patterns that match filenames and
values contain destination directory for the matched files. The destination
directories are relative to the site_root (it is possible to use .. to switch
to a parent directory).

file_pattern a pattern used for filename generation. It is possible to use string
templates and format strings for os.date function. The default pattern
%Y-%m-%d-${input} creates names in the form of YYYY-MM-DD-file_name.

header table with variables to be set in the YAML header in HTML files. If
the table value is a function, it is executed with current parameters and
HTML page DOM object as arguments.

remove_maketitle the staticsite extension removes text produced by the
\maketitle command by default. Set this option to false to disable the
removal.

18

Example:

-- set the environmental variable 'blog_root' with path to

-- the directory that should hold the generated HTML files

local outdir = os.getenv "blog_root"

filter_settings "staticsite" {

site_root = outdir,

map = {

[".css$"] = "/css/"

},

header = {

layout="post",

date = function(parameters, dom)

return os.date("!%Y-%m-%d %T", parameters.time)

end

}

}

7.8 The dvisvgm_hashes extension
options command line options for Dvisvgm. The default value is -n --exact

-c 1.15,1.15.

cpu_cnt the number of processor cores used for the conversion. The extension
tries to detect the available cores automatically by default.

parallel_size the number of pages used in each Dvisvgm call. The extension
detects changed pages in the DVI file and constructs multiple calls to
Dvisvgm with only changed pages.

scale SVG scaling.

7.9 The odttemplate filter and extension
template filename of the template ODT file

odttemplate can also get the template filename from the odttemplate option
from tex4ht_sty_par parameter. It can be set using the following command
line call:

make4ht -f odt+odttemplate filename.tex "odttemplate=template.odt"

7.10 The aeneas filter
skip_elements List of CSS selectors that match elements that shouldn’t be

processed. Default value: { "math", "svg"}.

id_prefix prefix used in the ID attribute forming.

sentence_match Lua pattern used to match a sentence. Default value:
"([^%.^%?^!]*)([%.%?!]?)".

19

7.11 The make4ht-aeneas-config package
Companion for the aeneas DOM filter is the make4ht-aeneas-config plugin. It
can be used to write the Aeneas configuration file or execute Aeneas on the
generated HTML files.

Available functions:
write_job(parameters) write Aenas job configuration to config.xml file. See

the Aeneas documentation for more information about jobs.

execute(parameters) execute Aeneas.

process_files(parameters) process the audio and generated subtitle files.
By default, a SMIL file is created. It is assumed that there is an audio file in

the mp3 format, named as the TEX file. It is possible to use different formats
and filenames using mapping.

The configuration options can be passed directly to the functions or set
using filter_settings "aeneas-config" {parameters} function.

7.11.1 Available parameters

lang document language. It is interfered from the HTML file, so it is not
necessary to set it.

map mapping between HTML, audio and subtitle files. More info below.

text_type type of input. The aeneas DOM filter produces an unparsed text
type.

id_sort sorting of id attributes. The default value is numeric.

id_regex regular expression to parse the id attributes.

sub_format generated subtitle format. The default value is smil.

7.11.2 Additional parameters for the job configuration file

• description

• prefix

• config_name

• keep_config
It is possible to generate multiple HTML files from the LATEX source. For

example, tex4ebook generates a separate file for each chapter or section. It is
possible to set options for each HTML file, in particular names of the corre-
sponding audio files. This mapping is done using the map parameter.

Example:
filter_settings "aeneas-config" {

map = {

["sampleli1.html"] = {audio_file="sample.mp3"},

["sample.html"] = false

}

}

20

https://www.readbeyond.it/aeneas/docs/clitutorial.html#processing-jobs

Table keys are the configured filenames. It is necessary to insert them as
["filename.html"], because of Lua syntax rules.

This example maps audio file sample.mp3 to a section subpage. The main
HTML file, which may contain title and table of contents doesn’t have a corre-
sponding audio file.

Filenames of the subfiles correspond to the chapter numbers, so they are
not stable when a new chapter is added. It is possible to request filenames
derived from the chapter titles using the sec-filename option for tex4ht.sty.

7.11.3 Available map options

audio_file the corresponding audio file

sub_file name of the generated subtitle file

The following options are the same as their counterparts from the main
parameters table and generally, don’t need to be set:

• prefix

• file_desc

• file_id

• text_type

• id_sort

• id_prefix

• sub_format

7.11.4 Full example
local domfilter = require "make4ht-domfilter"

local aeneas_config = require "make4ht-aeneas-config"

filter_settings "aeneas-config" {

map = {

["krecekli1.xhtml"] = {audio_file="krecek.mp3"},

["krecek.xhtml"] = false

}

}

local process = domfilter {"aeneas"}

Make:match("html$", process)

if mode == "draft" then

aeneas_config.process_files {}

else

aeneas_config.execute {}

end

21

8 Troubleshooting
8.1 Incorrect handling of command line arguments for

tex4ht, t4ht or latex

Sometimes, you may get a similar error:

make4ht:unrecognized parameter: i

It may be caused by a following make4ht invocation:

$ make4ht hello.tex "customcfg,charset=utf-8" "-cunihtf -utf8" -d foo

The command line option parser is confused by mixing options for make4ht
and TEX4ht in this case. It tries to interpret the -cunihtf -utf8, which are
options for the tex4ht command, as make4ht options. To fix that, try to move
the -d foo directly after the make4ht command:

$ make4ht -d foo hello.tex "customcfg,charset=utf-8" "-cunihtf -utf8"

Another option is to add a space before the tex4ht options:

$ make4ht hello.tex "customcfg,charset=utf-8" " -cunihtf -utf8" -d foo

The former way is preferable, though.

8.2 Table of Contents points to a wrong destination
The sectionid DOM filter creates better link destinations for sectioning com-
mands. In some cases, for example if you use Pandoc, the document may
already contain the link destination with the same name. In such cases the
original destination is preserved in the file. In this case links to the section
will point to that place, instead of correct destination in the section. This may
happen for example if you use Pandoc for the Markdown to LATEX conversion. It
creates \hypertarget commands that are placed just before section. The links
points to that place, instead of the actual section.

In this case you don’t want to update links. Use the notoc option to prevent
that.

8.3 Filenames containing spaces
tex4ht command cannot handle filenames containing spaces. to fix this issue,
make4ht replaces spaces in the input filenames with underscores. The generated
XML filenames use underscores instead of spaces as well.

8.4 Filenames containing non-ASCII characters
The odt output doesn’t support accented filenames, it is best to stick to ASCII
characters in filenames.

22

9 License
Permission is granted to copy, distribute and/or modify this software under the
terms of the LaTeX Project Public License, version 1.3.

10 Changelog
• 2023/02/24

– version 0.3k released.

• 2023/01/09

– fixed detection of image file names in mkutils.parse_lg()

• 2022/11/25

– reverted change of index page numbers, it was buggy
– test if the .idx file exists.

• 2022/11/24

– make4ht-indexing: fixed handling of numbers in index entries text.

• 2022/11/01

– remove empty last rows in MathML tables.

• 2022/10/21

– added the inlinecss DOM filter and extension with the same name.

• 2022/09/29

– the join_characters DOM filter now shouldn’t produce extra

elements after white space.

• 2022/09/16

– use the no^ option to compile the make4ht HTML docs, to prevent
clash with the Doc package.

• 2022/07/22

– mathmlfixes DOM filter:
∗ don’t change <mo> to <mtext> if the element contain the stretchy

attribute.
∗ add <mtext> to <mstyle> if it contains only plain text

• 2022/07/08

– configure elements used in join_characters DOM filter.

23

– added support for the mml: prefix in mathml_fixes DOM filter.

• 2022/06/28

– handle \maketitle in JATS.

• 2022/06/24

– handle internal and external links in the JATS output.
– better detection of empty paragraphs.

• 2022/06/16

– use DOM filters to fix JATS output.

• 2022/04/22

– use more explicit options for latexmk.

• 2022/04/19

– remove all htlatex calls from the build sequence when the latexmk_build
extension is used.

– fixed other issues that caused spurious executions of latexmk.

• 2022/04/01

– don’t copy files to the output dir if it wasn’t requested
– fixed copying of the ODT file to the output dir.

• 2022/03/29

– check if tidy return non-empty string in the tidy extension.

• 2022/03/24

– don’t use totally random names in the preprocess_input extension,
in order to support images correctly.

• 2022/03/22

– version 0.3l released.
– fixed issues with filenames on Windows.

• 2022/03/01

– use rmarkdown package to process .rmd files in the preprocess_input
extension (thanks to James Clawson).

• 2022/02/18

– version 0.3k released.

24

• 2022/02/07

– fixed support for some fonts in the ODT format.
– added odtfonts DOM filter.

• 2022/01/30

– fix mathvariant attribue of <mi> elements if they are children of
<mstyle>.

• 2021/12/17

– quote jobname in order to support filenames like (xxx).tex.

• 2021/12/13

– fixed setting of properties in the staticsite filter.

• 2021/12/06

– in the end, use <mtext> even for one <mo> in the fix_operators func-
tion. LO had issues with <mi>.

• 2021/12/03

– don’t add additional <mrow> elements in the mathmlfixes DOM filter.
It caused various issues.

• 2021/12/01

– transform <mn>x</mn><mo>.</mo><mn>x</mn> to <mn>x.x</mn> in MathML.
– transform <mo> elements that are single childs to <mi> in MathML,

and list of consecutive <mo> elements to <mtext>. This should fix
rendering issues of superscripts in LibreOffice.

– added filter names in extensions to prevent multiple execution of
filters.

• 2021/11/29

– make current logging level available outside of the Logging module.
– print Xtpipes and Tidy output if these command fail in the Xtpipes

module.

• 2021/11/18

– don’t put <mrow> as children of <mrow> in the mathmlfixes DOM filter.

• 2021/11/04

– more intelligent handling of text and inline elements outside of
paragraphs in the fixinlines DOM filter.

25

• 2021/10/11

– version 0.3j released.

• 2021/10/09

– fixed wrong DOM object name in the ODT format.
– add addtional <mrow> elements when necessary.

• 2021/09/30

– version 0.3i released.

• 2021/09/21

– run DOM parse in sandbox in the ODT format picture size function.

• 2021/09/20

– remove LaTeX commands from TOC entries in sectionid DOM filter.

• 2021/09/09

– corrected SVG dimension setting in the ODT output. Dimensions
are set also for PNG and JPG pictures.

• 2021/09/05

– corrected detection of closing brace in CSS style in mjcli filter.

• 2021/08/13

– use LaTeX new hook mechanism to load tex4ht.sty before document
class. It fixes some issues with packages required in classes.

• 2021/08/12

– correctly set dimensions for SVG images in the ODT format.

• 2021/07/29

– sort YAML header in the staticsite filter.

• 2021/07/25

– version 0.3h released.

• 2021/07/25

– use current directory as default output dir in staticsite extension.

• 2021/07/23

26

– fixed detection of single paragraphs inside in the itemparagraphs
DOM filter.

• 2021/07/18

– remove elements produced by \maketitle in the staticsite exten-
sion.

• 2021/07/05

– sort colors alphabetically in the joincolors DOM filter to enable
reproducible builds.

• 2021/06/26

– rewrote the collapsetoc DOM filter.

• 2021/06/20

– test for the svg picture mode in the tex4ht command. Use the -

g.svg option if it is detected. This is necessary for correct support of
pictorial characters.

• 2021/06/16

– better handling of duplicate ID attributes in sectionid DOM filter.
– support notoc option in sectionid.

• 2021/06/13

– added itemparagraphs DOM filter. It removes unnecessary para-
graphs from elements.

• 2021/05/06

– remove <hr> elements in .hline rows in tablerows DOM filter.

• 2021/05/01

– added function mkutils.isModuleAvailable. It checks if Lua library
is available.

– check for char-def library in sectionid DOM filter.

• 2021/04/08

– removed build_changed. New script, siterebuild, should be used
instead.

– new DOM filter, sectionid. It uses sanitized titles instead of auto-
matically generated numbers as section IDs.

– added sectionid to common_domfilters.
– use context in the Docker file, because it contains the char-def.lua

file.

27

https://github.com/michal-h21/siterebuild

• 2021/03/20

– use kpse library when files are copied to the output directory.
– added clean mode. It removes all generated, temporary and auxilary

files.

• 2021/03/19

– version 0.3g released.

• 2021/02/08

– remove <?xtpipes ?> processing instructions from the generated
ODT file.

• 2021/02/01

– better error messages when extension cannot be loaded.
– added mjcli extension.
– mjcli filter supports LATEX syntax.
– updated documentation.

• 2021/01/31

– added new MathJax Node filter, mjcli.

• 2020/12/19

– build web documentation only when documentation sources change.

• 2020/11/22

– set exit status for the make4ht command.

• 2020/11/22

– new extension, build_changed.

• 2020/11/01

– fix deprecated <mfenced> element in MathML
– convert <mo fence> elements to <mfenced> in ODT format.

• 2020/10/28

– fixed handling of nested elements in joincharacters DOM
filter.

• 2020/10/25

– fixed command name for Make:httex, it was Make:htttex.

• 2020/10/17

28

– generate YAML header for all generated files with the staticsite

extension.

• 2020/09/17

– require mathml option when mathjaxnode extension is used.

• 2020/09/07

– version 0.3f released.

• 2020/08/26

– fixinlines DOM filter: added <a> element into list of inline ele-
ments.

• 2020/08/24

– initialize attributes in new element in mathmlfixes DOM extension.

• 2020/07/18

– changed CSS for the HTML documentation.

• 2020/07/17

– fixed bug in index parsing.

• 2020/07/10

– use the joincharacters DOM filter for TEI output.

• 2020/07/08

– don’t fail when filename cannot be detected in make4ht-errorlogparser.lua.

• 2020/05/27

– test if copied file exists in mkutils.cp.

• 2020/05/19

– fixed image filename replace in dvisvgm_hashes extension.

• 2020/05/16

– fixed HTML filename matching in extensions.

• 2020/05/08

– use global environment in the build files.

• 2020/03/03

– added jats format.

29

• 2020/02/28

– version 0.3e released.

• 2020/02/24

– t4htlinks DOM filter: cleanup file names from internal links.
– make4ht-indexing: added support for splitindex.

• 2020/02/19

– use UTF-8 output by default. 8-bit output is broken and non fixable.

• 2020/02/07

– use lualatex-dev instead of harflatex

• 2020/02/06

– added support for harflatex and harftex in the detect_engine ex-
tension.

• 2020/01/22

– version 0.3d released.
– added Make:httex command for Plain TeX support.
– added detect_engine extension. It supports detection of the used

engine and format from TeX Shop or TeXWorks magic comments.
These comments can look like: %!TEX TS-program = xelatex.

• 2020/01/22

– fixed support for multiple indices in make4ht-indexing.lua.

• 2019/12/29

– use the mathvariant="italic" attribute for joined <mi> elements.
– fixed comparison of element attributes in joincharacters DOM fil-

ter.

• 2019/12/28

– print warning if the input file doesn’t exist.

• 2019/12/17

– added booktabs DOM filter.
– load the booktabs in common_domfilters by default.

• 2019/12/14

30

– fixed bug in the tablerows DOM filter – it could remove table rows
if they contained only one column with elements that contained no
text content.

• 2019/11/28

– version 0.3c released.
– updated mathmlfixes DOM filter. It handles <mstyle> element in-

side token elements now.
– use mathmlfixes and joincharacters DOM filters for math XML

files in the ODT output.

• 2019/11/25

– added pythontex command.
– added mathmlfixes DOM filter.
– use the mathmlfixes DOM filter in common_domfilters extension.

• 2019/11/22

– make4ht-joincharacters dom filter: added support for the <mi> ele-
ment. Test all attributes for match when joining characters.

– html5 format: use the common_domfilters by default.

• 2019/11/03

– version 0.3b

– use make4ht-ext- prefix for extensions to prevent filename clashes
with corresponding filters.

• 2019/11/01

– version 0.3a released.
– added make4ht- prefix to all extensions and formats
– removed the unused mathjaxnode.lua file.

• 2019/11/01

– version 0.3 released.
– added Make:makeindex, Make:xindex and Make:bibtex commands.

• 2019/10/25

– modified the Make:xindy command to use the indexing mechanism.

• 2019/10/24

– added functions for preparing and cleaning of the index files in
make4ht-indexing.lua.

31

• 2019/10/23

– replaced os.execute function with mkutils.execute. It uses the
logging mechanism for the output.

– finished transforming of filters, extensions and formats to the logging
system.

• 2019/10/22

– added tablerows domfilter.
– added the tablerows domfilter to the common_domfilters extension.
– converted most of the filters to use the logging mechanism.

• 2019/10/20

– added status log level.

• 2019/10/18

– converted most print commands to use the logging mechanism.
– added output log level used for printing of the commands output.

• 2019/10/17

– added --loglevel CLI parameter.
– added logging mechanism.
– moved htlatex related code to make4ht-htlatex.lua from mkutils.lua

• 2019/10/11

– added xindy settings.
– added simple regular expression to detect errors in the log file, be-

cause log parsing can be slow.

• 2019/10/09

– added the interaction parameter for the htlatex command. The
default value is batchmode to suppress the user input on errors, and
to suppress full log output to the terminal.

– added the make4ht-errorlogparser module. It is used to parse er-
rors in the htlatex run unless interaction is set to errorstopmode.

• 2019/10/08

– set up Github Actions pipeline to compile the documentation to
HTML and publish it at https://www.kodymirus.cz/make4ht/make4ht-
doc.html.

• 2019/10/07

32

– don’t move the common_domfilters extension to the first place in the
file matches pipeline. We may want to run tidy or regex filters first,
to fix XML validation errors.

• 2019/10/04

– added HTML documentation.

• 2019/09/27

– don’t convert Latin 1 entities to Unicode in the entities_to_unicode
extension.

• 2019/09/20

– fixed bugs in the temporary directory handling for the ODT output.

• 2019/09/13

– added preprocess_input extension. It enables compilation of for-
mats supported by Knitr (.Rnw, .Rtex, .Rmd, .Rrst) and also Mark-
down and reStructuredText formats.

• 2019/09/12

– added support for the ODT files in common_domfilters extension.
– renamed charclases option for the joincharacters DOM filter to
charclasses.

– don’t execute the fixentities filter before Xtpipes, it makes no
sense.

• 2019/09/11

– added support for Biber in the build files.

• 2019/08/28

– added support for input from stdin.

• 2019/08/27

– fixed -jobname detection regex.
– added function handle_jobname.
– added the --jobname command line option.

• 2019/08/26

– quote file names and paths in xtpipes and tidy invocation.

• 2019/08/25

– the issue tracker link in the help message is now configurable.

33

https://yihui.name/knitr/

– fixed bug in the XeTeX handling: the .xdv argument for tex4ht

wasn’t used if command line arguments for tex4ht were present.

• 2019/07/03

– new DOM filter: odtpartable. It fixes tables nested in paragraphs
in the ODT format.

• 2019/06/13

– new DOM extension: collapsetoc.

• 2019/05/29

– new module: make4ht-indexing for working with index files.

• 2019/05/24

– version 0.2g released
– fixed failing dvisvgm_hashes extension on Windows.

• 2019/05/02

– fixed infinite loop bug in the dvisvgm_hashes extension.

• 2019/04/09

– make4ht-joincolors fix: remove the hash character from the color
name. This caused issues with colors specified in the hexadecimal
format.

• 2019/04/02

– dvisvgm_hashes fix: update also the lgfile.images table with gener-
ated filenames, in order to support tex4ebook

• 2019/04/01

– fixed bug in dvisvgm_hashes extension: didn’t check for table index
existence in string concenation

• 2019/03/21

– version 0.2f released

• 2019/03/15

– check for the image dimensions existence in the odtimagesize dom-
filter.

• 2019/03/13

– don’t use odtimagesize domfilter in the ODT format, the issue it fixes
had been resolved in tex4ht.

34

• 2019/03/08

– use %USERPROFILE for home dir search on Windows.

• 2019/01/28

– added joincolors domfilter and join_colors extension. It can join
CSS rules created for the LaTeX colors and update the HTML file.

• 2019/01/22

– version 0.2e released
– updated the odttemplate filter. It will use styles from the generated

ODT file that haven’t been present in the template file.

• 2019/01/10

– version 0.2d released

• 2019/01/05

– added docbook and tei output formats.

• 2018/12/19

– new library: make4ht-xtpipes.lua. It contains code for xtpipes han-
dling.

– moved Xtpipes handling code from formats/odt.lua.

• 2018/12/18

– new filter: odttemplate. It can be used for replacing style in a
generated ODT file by a style from another existing ODT file.

– new extension: odttemplate. Companioning extension for filter with
the same name.

– fixed bug in make4ht-filters.lua: the parameters table haven’t
been passed to filters.

• 2018/12/17

– fixed extension handling. The disabling from the command line
didn’t take precedence over extensions enabled in the config file.
Extensions also could be executed multiple times.

• 2018/11/08

– removed replacing newlines by blank strings in the joincharacters

domfilter. The issue it fixed doesn’t seem to exist anymore, and it
ate spaces sometimes.

• 2018/11/01

35

– added t4htlinks domfilter
– fixed the xtpipes and filters execution order in the ODT format

• 2018/10/26

– fixed ODT generation for files that contains special characters for
Lua string patterns

– replace non-breaking spaces with entities. It caused issues in LO

• 2018/10/18

– fixed the executable installation

• 2018/09/16

– added the scale option for dvisvgm_hashes extension

• 2018/09/14

– require the -dvi option with latexmk_build extension

• 2018/09/12

– added xindy command for the build file

• 2018/09/03

– expanded the --help option

• 2018/08/27

– added odtimagesize domfilter
– load odtimagesize by default in the ODT format

• 2018/08/23

– released version 0.2c

• 2018/08/21

– added processor core detection on Windows
– make processor number configurable
– updated the documentation.

• 2018/08/20

– added dvisvgm_hashes extension

• 2018/07/03

– create the mimetype file to achieve the ODT file validity

• 2018/07/02

36

– disabled conversion of XML entities for &, < and > characters back
to Unicode, because it breaks XML validity

• 2018/06/27

– fixed root dir detection

• 2018/06/26

– added code for detection of TeX distribution root for Miktex and TL

• 2018/06/25

– moved call to xtpipes from t4ht to the ODT format drives. This should
fix issues with path expansion in tex4ht.env in TeX distributions.

• 2018/06/22

– added mkutils.find_zip function. It detects zip or miktex-zip exe-
cutables

• 2018/06/19

– added new filter: entities-to-unicode. It converts XML entites for
Unicode characters back to Unicode.

– execute entities-to-unicode filter on text and math files in the
ODT output.

• 2018/06/12

– added support for direct ODT file packing

• 2018/06/11

– new function available for formats, format.modify_build
– function mkutils.delete_dir for directory removal
– function mkutils.mv for file moving
– started on packing of the ODT files directly by the format, instead of
t4ht

• 2018/06/08

– added support for filenames containing spaces
– added support for filenames containing non-ascii characters
– don’t require sudo for the installation, let the user to install symbolic

links to $PATH

• 2018/05/03

– released version 0.2b

37

– bug fix: use only load function in Make:run, in order to support a
local environment.

• 2018/05/03

– released version 0.2a

– renamed latexmk extension to latexmk_build, due to clash in TL

• 2018/04/18

– staticsite extension:
∗ make YAML header configurable
∗ set the time and updated headers

– don’t override existing tables in filter_settings

• 2018/04/17

– done first version of staticsite extension

• 2018/04/16

– check for Git repo in the Makefile, don’t run Git commands outside
of repo

• 2018/04/15

– added staticsite filter
– working on staticsite extension

• 2018/04/13

– use ipairs instead of pairs to traverse lists of images and image
match functions

– load extensions in the correct order

• 2018/04/09

– released version 0.2

– disabled default loading of common_domfilters extension

• 2018/04/06

– added Make:enable_extension and Make:disable_extension func-
tions

– documented the configuration file

• 2018/03/09

– load the configuration file before extensions

• 2018/03/02

38

– Aeneas execution works
– Aeneas documentation
– added support for .make4ht configuration file

• 2018/02/28

– Aeneas configuration file creation works

• 2018/02/22

– fixed bug in fixinlines DOM filter

• 2018/02/21

– added Aeneas domfilter
– fixed bugs in joincharacters DOM filter

• 2018/02/20

– fixed bug in joincharacters DOM filter
– make woff default font format for mathjaxnode
– added documentation for mathjaxnode settings

• 2018/02/19

– fixed bug in filter loading
– added mathjaxnode extension

• 2018/02/15

– use HTML5 as a default format
– use common_domfilters implicitly for the XHTML and HTML5 for-

mats

• 2018/02/12

– added common_domfilters extension
– documented DOM filters

• 2018/02/12

– handle XML parsing errors in the DOM handler
– enable extension loading in Formatters

• 2018/02/11

– fixed Tidy extension output to support LuaXML
– fixed white space issues with joincharacters DOM filter

• 2018/02/09

39

– fixed issues with the Mathjax filter
– documented basic info about thd DOM filters
– DOM filter optimalizations

• 2018/02/08

– make Tidy extension configurable
– documented filter settings

• 2018/02/07

– added filter for Mathjax-node

• 2018/02/06

– created DOM filter function
– added DOM filter for spurious inlinine elements

• 2018/02/03

– added settings handling functions
– settings made available for extensions and filters

• 2017/12/08

– fixed the mk4 build file loading when it is placed in the current
working dir and another one with same filename somewhere in the
TEXMF tree.

• 2017/11/10

– Added new filter: svg-height. It tries to fix height of some of the
images produced by dvisvgm

• 2017/10/06

– Added support for output format selection. Supported formats are
xhtml, html5 and odt

– Added support for extensions

• 2017/09/10

– Added support for Latexmk
– Added support of math library and tonumber function in the build

files

• 2017/09/04

– fixed bug caused by the previous change – the –help and –version
didn’t work

40

• 2017/08/22

– fixed the command line option parsing for tex4ht, t4ht and latex

commands
– various grammar and factual fixes in the documentation

• 2017/04/26

– Released version v0.1c

• 2017/03/16

– check for TeX capacity exceeded error in the LATEX run.

• 2016/12/19

– use full input name in tex_file variable. This should enable use of
files without .tex extension.

• 2016/10/22

– new command available in the build file: Make:add_file(filename).
This enables filters and commands to register files to the output.

– use ipairs instead of pairs for traversing files and executing filters.
This should ensure correct order of executions.

• 2016/10/18

– new filter: replace colons in id and href attributes with underscores

• 2016/01/11

– fixed bug in loading documents with full path specified

• 2015/12/06 version 0.1b

– modifed lapp library to recognize --version and
– added --help and --version command line options

• 2015/11/30

– use kpse library for build file locating

• 2015/11/17

– better -jobname handling

• 2015/09/23 version 0.1a

– various documentation updates
– mozhtf profile for unicode output is used, this should prevent liga-

tures in the output files

41

• 2015/06/29 version 0.1

– major README file update

• 2015/06/26

– added Makefile
– moved INSTALL instructions from README to INSTALL

42

	Contents
	1 Introduction
	2 Usage
	2.1 Command line options
	2.2 Option handling
	2.3 Input from the standard input
	2.4 Change amount of information printed on the command line

	3 Difference of make4ht from htlatex
	3.1 Passing of command line arguments to low-level commands used in the conversion
	3.2 Compilation sequence
	3.3 Handling of the generated files
	3.4 Image conversion and postprocessing of the generated files

	4 Output file formats and extensions
	4.1 Extensions

	5 Build files
	5.1 User commands
	5.1.1 The command function
	5.1.2 The settings table table
	5.1.3 Repetition
	5.1.4 Expected exit code

	5.2 Provided commands
	5.3 File matches
	5.3.1 Filters
	5.3.2 DOM filters

	5.4 Image conversion
	5.5 The mode variable
	5.6 The settings table
	5.6.1 Default settings

	6 make4ht configuration file
	6.1 Location
	6.2 Additional commands
	6.3 Example

	7 List of available settings for filters and extensions.
	7.1 Indexing commands
	7.1.1 The xindy command
	7.1.2 The makeindex command
	7.1.3 The xindex command

	7.2 The tidy extension
	7.3 The collapsetoc dom filter
	7.4 The fixinlines dom filter
	7.5 The joincharacters dom filter
	7.6 The mjcli filter and extension
	7.6.1 Available settings

	7.7 The staticsite filter and extension
	7.8 The dvisvgm_hashes extension
	7.9 The odttemplate filter and extension
	7.10 The aeneas filter
	7.11 The make4ht-aeneas-config package
	7.11.1 Available parameters
	7.11.2 Additional parameters for the job configuration file
	7.11.3 Available map options
	7.11.4 Full example

	8 Troubleshooting
	8.1 Incorrect handling of command line arguments for tex4ht, t4ht or latex
	8.2 Table of Contents points to a wrong destination
	8.3 Filenames containing spaces
	8.4 Filenames containing non-ASCII characters

	9 License
	10 Changelog

